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Reservoir-parameter identification using minimum relative entropy-based
Bayesian inversion of seismic AVA and marine CSEM data

Zhangshuan Hou', Yoram Rubin', G. Michael Hoversten®, Don Vasco?, and Jinsong Chen®

ABSTRACT

A stochastic joint-inversion approach for estimating reser-
voir-fluid saturations and porosity is proposed. The approach
couples seismic amplitude variation with angle (AVA) and
marine controlled-source electromagnetic (CSEM) forward
models into a Bayesian framework, which allows for integra-
tion of complementary information. To obtain minimally
subjective prior probabilities required for the Bayesian ap-
proach, the principle of minimum relative entropy (MRE) is
employed. Instead of single-value estimates provided by de-
terministic methods, the approach gives a probability distri-
bution for any unknown parameter of interest, such as reser-
voir-fluid saturations or porosity at various locations. The
distribution means, modes, and confidence intervals can be
calculated, providing a more complete understanding of the
uncertainty in the parameter estimates. The approach is dem-
onstrated using synthetic and field data sets. Results show
that joint inversion using seismic and EM data gives better
estimates of reservoir parameters than estimates from either
geophysical data set used in isolation. Moreover, a more in-
formative prior leads to much narrower predictive intervals
of the target parameters, with mean values of the posterior
distributions closer to logged values.

INTRODUCTION

Estimating reservoir-fluid saturation and porosity is the goal of
many geophysical surveys in hydrocarbon exploration and produc-
tion. Changes in pore pressure and water saturation can be predicted
when only oil and water are present (Landro, 2001). However, the
presence of gas may complicate the estimation problem and may
make itill posed. This difficulty is primarily from the insensitivity of

acoustic-(V,) and shear-(V,) wave velocities to gas saturation. Ac-
cording to Gassmann’s equations, a gas sand with 1% gas saturation
can have the same V,/V as a commercial accumulation of gas (Cast-
agna, 1993). Previous studies on the inversion of seismic amplitude
variation with angle (AVA) or amplitude variation with offset (AVO)
data to predict seismic parameters (Debski and Tarantola, 1995;
Plessix and Bork, 2000; Buland and More, 2003) conclude that cur-
rent seismic technology cannot reliably be used to distinguish eco-
nomic from noneconomic gas accumulations, resulting in signifi-
cant exploration losses. Regardless of this inability, seismic technol-
ogy can provide two critical pieces of information needed for the ul-
timate estimation of gas saturation: the physical location of the
reservoir unit, to within a few percent of the true values, and the po-
rosity of the reservoir unit.

In contrast to the insensitivity of seismic attributes to gas satura-
tion, electrical resistivity of reservoir rocks is very sensitive to gas
saturation through the link to water saturation, as can be seen from
Archie’s law (Archie, 1942), which predicts the bulk resistivity as a
function of gas saturation (1-3S,,), as shown in Figure 1. The depen-
dence of the bulk resistivity on gas saturation is useful for discrimi-
nating economic from noneconomic gas saturation in that the most
rapid change in resistivity occurs at saturations larger than 0.7,
which is mostly above the lower threshold saturation value needed
for economic production.

Estimates for bulk resistivity of reservoir rocks can be obtained
using marine controlled-source electromagnetic (CSEM) sounding
systems, which typically consist of a ship-towed electric-dipole
source and a series of seafloor-deployed recording instruments capa-
ble of recording orthogonal electric fields. Although both CSEM and
passive-source magnetotelluric (MT) systems can be considered for
petroleum-related exploration (Hoversten and Unsworth, 1994),
CSEM systems have superior resolving capabilities when compared
to MT. In the last few years, attention has been focused on the use
of CSEM systems in direct detection/mapping of hydrocarbons
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(Ellingsrud et al., 2002), and a number of contractors have begun of-
fering marine CSEM data on a commercial basis.

Because seismic and EM data have different spatial coverage and
provide different images of the geology, the inclusion of EM data has
the potential to improve reservoir parameter estimates over indus-
try-standard seismic AVA techniques by providing complementary
information to seismic AVA data. This is not a new idea, and studies
along this line are reported (e.g., Tseng and Lee, 2001; and Hover-
sten et al., 2003). However, several challenges need to be addressed
before such integration becomes suitable for common applications.

The major challenge is to show if and how the two different yet
complementary types of data can be used beneficially. In fact, it is
still a challenging issue to integrate various types of data and correct-
ly weight their associated errors. For example, different types of data
are characterized by different error levels, which are not always
known prior to the inversion. Therefore, methods are needed for
modeling such errors with minimum subjectivity.

Another challenge is that deterministic inversion is often an
ill-posed mathematical problem because of nonuniqueness and in-
stability. This suggests that inversion formulated in a stochastic
framework (Rubin, 2003) may be more robust than traditional deter-
ministic approaches, but additional research is needed to identify
suitable stochastic formulations and to address specific issues such
as computing efficiency.

Finally, incorporating prior information is not trivial. Prior infor-
mation is available, in many cases, to constrain the inversion. Such
information may come from geologically similar formations in the
form of imprecise information such as statistical moments (means,
variances, etc.) of the target parameters. Questions then arise as to
what would be a rational approach for formulating such prior infor-
mation within the stochastic framework.

To address these issues, we propose an entropy-based Bayesian
stochastic inversion approach for estimating reservoir-fluid satura-
tions and porosity. The approach couples seismic AVA and marine
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Figure 1. Reservoir bulk resistivity as a function of gas saturation
(S,) using the parameters determined from log data at the Troll field
site. Porosity = 20%.

CSEM forward models into a Bayesian framework, which allows for
integration between complementary information. A deterministic
joint-inversion algorithm using nonlinear optimization for the same
joint-inverse problem is covered in a companion paper by Hoversten
et al. (2006). In this paper, we briefly compare the deterministic ap-
proach and our proposed stochastic approach.

METHODOLOGY

Seismic data used for this study are prestacked angle gathers that
have been normal moveout (NMO) corrected and processed to re-
move multiples. Marine CSEM data were collected at 24 receivers
along a line across a portion of the Troll field. For our demonstration,
we have used the amplitude and phase of the recorded electric field
as a function of frequency and transmitter-receiver offset at one of
these receivers located nearest a well that is used for comparison.
The AVA data are from a common midpoint (CMP) located within
50 m of the CSEM receiver. In the joint inversion, different model-
ing domains for the seismic AVA and the CSEM calculations are re-
quired as illustrated in Figure 2, because of the substantial differenc-
es in the nature of energy propagation in the earth caused by a seis-
mic source as opposed to a CSEM source. Particularly, EM energy is
characterized by higher attenuation than seismic energy. After ap-
propriate seismic processing (including amplitude recovery), one
can assume that the seismic attenuation in the earth above the target
interval (the overburden) has been accounted for and thus can be
neglected in the seismic modeling. However, this assumption is in-
appropriate when modeling EM data because the effects of the over-
burden on the target-zone responses are large and cannot be estimat-
ed independently. Thus, EM calculations require a model with
electrical conductivity described from the sea surface down (an infi-
nite air layer is also included), while the seismic calculations only re-
quire reflection coefficients to be calculated over the area of interest.

Although attenuation in the overburden can be neglected in the
seismic modeling, overburden velocities (V, and V;) and bulk densi-
ty (p) above the target need to be included as parameters in seismic
inversion. The reason is that a time window of the seismic AVA data
is chosen in the inversion, and it is possible that the window does not
exactly match the target (reservoir) zone, especially when the avail-
able velocity model used for time-to-depth conversions is not exact.

Seawater
Estimate ¢
. {overburden)
Estimate (Vp, Vi, p)
EM
data
AVA Target zone
data estimate (5,5, ¢)
Estimate (Vp, Vs, p) Estimate ¢
(under target)

Figure 2. Schematic map of the inversion domain. The target zone is
parameterized by S,, S,,, and ¢ and is surrounded by V,,, V, and den-
sity zone for the AVA data and surrounded by conductivity zone for
the CSEM data. The conductivity model includes the air layer for
CSEM calculations.
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For EM inversion, since electrical conductivities in the seawater
(0y,) and in the overburden (o ,,.,) often have important effects on
the estimation of gas saturation in the reservoir, we also consider
them as unknowns. Thus, the unknowns to be inferred from seismic-
data inversion include water saturation S, gas saturation S,, oil sat-
uration S,, and porosity ¢ in the target zone, as well as V,, V, and
density p in the layers below and above the target zone. Note that S,
is not an independent random-variable vector, since S, =1 — S,
— S,. The unknowns in EM data inversion include S,,, S,, S,, and ¢
in the target zone, as well as o, and o, The layer thickness can
also be considered as unknown. Note that we use boldface letters to
represent vectors.

We represent the vector of unknowns by m. To account for param-
eter uncertainty, m is viewed as a realization of a random-variable
vector M, which is characterized by a p-variate probability-distribu-
tion function (PDF) fy(m), where p is the total number of parame-
ters in M. The expectation of a function g(m) (for example, the mean
or variance) of m can be calculated as

(g(m)) = J g(m)fy(m)d’m, (1)

which is the integration over the entire vector space of m.

Bayesian theory

Our approach is based on Bayes’ theorem, which has previously
been introduced into the field of reservoir characterization. For ex-
ample, Eidsvik et al. (2002) and Buland and More (2003) develop
methods for linearized seismic AVO inversion within a Bayesian
framework where the posterior distributions of the target parameters
are explored by Markov-chain Monte Carlo (MCMC) simulation.
The Bayesian approach, coupled with the MCMC method, has been
tested on both synthetic and field data sets by Chen et al. (2004),
where both seismic AVA and EM data were included in the inverison
without linearization.

In this study, we propose an entropy-based Bayesian approach
that can quantify uncertainty as well as allow implementation of dif-
ferent sources of information. These sources may include prior in-
formation as well as observations such as seismic AVA and marine
CSEM data. The approach determines the prior PDFs of the target
parameters using the minimum relative entropy (MRE) method
(Woodbury and Ulrych, 1993; Rubin, 2003; Hou and Rubin, 2005)
and evaluates the posterior PDFs using a quasi-Monte Carlo method
(Ueberhuber, 1997, p. 125).

For completeness, the Bayes theorem is quoted here (Rubin,
2003, chapter 13):

Sovx(d”[m,I) frgy(mT)

f Sopi(d'[m,I) fyy(m|T)@”m

a1 =

2)

fM\D,I(m

Capital letters denote random variables and lower-case letters de-
note their realizations. Here, d* is a vector of observations, which in-
cludes both marine CSEM and seismic AVA data, and which we con-
sider as a realization of a vector D; m (a realization of M) is a vector
of order p, which includes the p parameters needed for modeling

the seismic and EM responses; and I denotes the prior information
available on m. If we know the true values m of M, we can compute
the noise-free data d of D forward modeled from them. The term
fw(m|I) is the prior PDF of m given L, fpi(d*jm,1) is the likeli-
hood function, and fM‘DVI(m|d*,I) is the posterior PDF. Simply stat-
ed, the likelihood function maps the prior into the posterior, based on
the conditional PDF of the observations.

Our analysis consists of three steps. First, we model the prior by
use of MRE, a systematic, analytic method that determines the prior
PDF based on information such as bounds, means, or variances of
the parameters with minimum subjectivity. Second, we model the
likelihood function; we assumed” = g(m) + €, where g is a forward
model and € denotes the differences between observations and for-
ward-model responses. In our analysis, g can be either g,, where g, is
a forward seismic AVA model, or g,, where g, is a forward-EM
model. Third, we model the posterior distributions and calculation of
the corresponding statistics of the parameters using quasi-Monte
Carlo integration. These steps are explained in the following sec-
tions.

Modeling the prior using MRE

The MRE method is a general approach for inferring a probability
distribution from information (constraints) that incompletely char-
acterizes that distribution. These constraints may include reasonable
lower and upper bounds, i.e., averages and variances of the subsur-
face parameters, which can be obtained from geophysical databases
or from measurements (e.g., well logs) of a few or all of the random
variables in M at or near the study site.

The MRE solution for the prior PDF in the case where information
is available in the form of the first and second statistical moments
(e.g., the mean and the variance) as well as upper and lower bounds
has been derived (Hou and Rubin, 2005). The prior PDF in this case
assumes the form of a multivariate, truncated, Gaussian PDF:

. B; 2
\/%exp[— 7j<mj + 2—;) }

]

fM|1(m|I)

=11 ,
=1 — B; B;
@{\Q)/J(Uj + 2—;)} - @{\’%(Lj + 2‘}’]-)]
(3)

where I represents the prior information, @ represents the standard
Gaussian cumulative-distribution function (CDF), U; and L, are the
upper and lower bounds of parameter 1, and 3; and y; are the multi-
pliers that must be determined from the constraints, including the
bounds and the moments.

The PDF represented by equation 3 has several interesting prop-
erties, making it a general solution. In the absence of bounds,
fM/u(m j|I) assumes the form of the Gaussian distribution with mean
—B;/(2,) and variance 1/(2;). If the standard deviation is large
compared to the minimum difference between the expectation
and the bounds, it has the form of a truncated exponential. If the vari-
ance is large and the mean is in the middle of the bounds, the PDF be-
comes uniform. When the variance goes to zero, then y;— ,
}ig}c fMj‘I(mj\I) is adelta function 8(m; — s;). When L,— U, the lim-
it of the PDF is also a delta function.
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The MRE PDFs may still be helpful when a bimodal distribution
is possible in practice. If a distribution has two modes, when mode 1
has higher possibility than mode 2, then the prior mean is closer to
mode 1 and the MRE PDF may take the form of truncated exponen-
tial, which will assign higher weight to mode 1. If the two modes
have similar weights, so that the prior mean is in the middle of the
bounds, the MRE PDF will be uniform, which guarantees that the
values around the two modes have the similar chance to be sampled.
The MRE-Bayesian approach does allow the posterior distribution
to have multimodes, as shown later in the inversion results.

Moreover, when we expect bimodal distributions, covering the
produced and nonproduced parts of a reservoir or in exploration the
saturated and unsaturated zones, the MRE prior PDF can be general-
izedasf = Ind(x)f, + [1 = Ind(x)]f2 where Ind is an indicator vari-
able with Ind = 1 if x is in unsaturated (or nonproduced) area. The
PDF f; corresponds to the unsaturated (or nonproduced) area, and f,
corresponds to saturated (or produced); f; is determined using the
MRE method when the bounds and the prior moments are available
formode 1, so as to f5.

Let’s say we are looking at a prior in a place where P = Prob(Ind
=1) = 0.4, then the prior is f(x|Ind = 1)Prob(Ind = 1) + f(x|Ind
= 0)Prob(Ind = 0) = f1%0.4 + f2%0.6. If P is unknown, we can
also consider P as a random variable and derive its prior PDF using
the MRE theory. Sampling from the generalized prior PDF f can be
as follows:

1) generate arandom sample u, from the distribution of P;

2)  generate arandom number u, from the [0, 1] uniform distri-
bution;

3) ifuy>u;, we generate the sample from f;, otherwise we use
the sample from f>;

4) repeatsteps 1-3.

Forward models and the likelihood function

Forward geophysical modeling is used to estimate the likelihood
function fppr(d’jm,I). Our analysis assumes that the underlying
geological structure can be represented by a layered 1D model.

For the 1D seismic AVA model g,, the Zoeppritz equation is used
to calculate the angle-dependent reflectivity, which is convolved
with an angle-dependent wavelet to form the calculated seismic AVA
responses (Shuey, 1985). The modified Hashin-Shtrikman lower
bounds (Hashin and Shtrikman, 1963) are used to calculate the effec-
tive moduli for porosities smaller than the critical value. This model
is described by Dvorkin and Nur (1996) as applied to modeling ve-
locity-pressure relations for North Sea sandstones, and its use in
combined seismic and EM inversion is described by Hoversten et al.
(2003).

For the EM forward model g,, we employed an integral-equation
solution for the electric field from an electric-dipole source within a
layered medium (Ward and Hohmann, 1987). Archie’s law (Archie,
1942) is used to model electrical resistivity as a function of ¢pand S,
The fluid bulk moduli (Kpyie, Koit, Kieg) and densities ( prines Poits Preg)
of brine, oil, and hydrocarbon gas, respectively, are computed using
relations from Batzle and Wang (1992).

Because seismic AVA and marine EM techniques are sampling
different properties over different domains, we can consider them
as independent of each other. Thus, the likelihood function can be
written as fppi(djm,I) = fD1|M,I(dT|m,I) X‘fDZ‘M,I(dﬂm,I), where
d; = g,(m) + &, represent the observations of seismic reflectivity,

andd; = g,(m) + &, include amplitudes and phases of the observed
electric field. The forward models can be summarized as d;
=g;(m) +¢gyi=1,...,K,j=1,...,N, where K is the number of
measurement types and N, is the number of observations for the ith
type.

The likelihood function can be represented by the distributions of
theerrors g, i = 1,..., K, j = 1,...,N,. Specifically, if it is assumed
that &, is characterized by a variance o7 and that this is all that we
know of it, the MRE principle indicates that the least prejudiced pri-
or PDF for g;; is the Gaussian distribution. If one can assume that
these distributions are independent, the likelihood function can be
represented as

fopzi(d’/m,o.T)

Sl

i=1 j=1 L \2moy;

1,
N 2
exp) - zalgj[dij - gij(m)] .4

The posterior PDF via inverse modeling

The vector o = (0y,i = 1,...,K,j =1,...,N)) is generally un-
known, and it is subjective to assign deterministic values to o based
on experiences. Here, we consider o as a random-variable vector;
thus, the joint PDF of m and o can be defined using Bayes’ theorem.
Assuming that o is independent of m, this PDF is given by

fmspi(m,old’.1)
Somzi(d’[m, e, 1) fygr(m[D fs (o)

J J fD|M,2,I(d*|m,0',I)fM,2|I(m,U|I)dpmd(N:N’)‘T
m o

(5)

To reduce computational demands, the dependence on o can be
eliminated through analytical integration of equation 5 over o. The
significance of this step is in incorporating the uncertainty associat-
ed with o, while deconditioning the final results from any specific
value of o. A conservative approach is to assume that the errors
vary between zero and the upper bound of d;;. Thus, the prior PDF
fsn(oI) is modeled here as a uniform distribution between the
bounds. Consequently, the analytical integration of equation 5 over
o leads to the desired posterior PDF of m (Hou and Rubin, 2005):

Fvpg(mld’.T)

K N
[ ) J . )
fM\l(m|I)H H |:Ei —d;; - g;(m)] ¢ - Ei\ —I[d}; - g;;(m)]* :|
1 et 2uj; 21
K N B
. [
A [TT1 |:Ei —ld}~ gy m) { ~ Ei{ —[d} - g, (m) ]dﬂm
. i el 2u}; 21

(6)

where /;; and u;; are the lower and upper bounds for o;;, respectively,
and Ei is the exponential-integral function, Ei(x) = [7(exp(-1)/
t)dt. Equation 6 can be used to narrow the posterior PDF and to im-
prove our model predictions given observations d”.

Since the forward models of seismic AVA and marine EM data are
highly nonlinear and the number of unknown parameters is large, the
posterior distribution in equation 6 cannot be evaluated using con-

o
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ventional analytical methods. Different sampling methods need to
be considered instead, such as the Monte Carlo sampling method,
quasi-Monte Carlo method, or importance sampling methods. The
sampling strategy in this study is presented in Appendix A.

SYNTHETIC STUDIES

We illustrate our approach by using seismic and EM data inver-
sion individually as well as jointly. A simple reservoir model assum-
ing known rock properties is used for initial testing. The synthetic
seismic and EM data sets are generated using a 1D model with
1000 m of seawater over a conductive sedimentary sequence. The
target horizon is 1700 m below the seafloor. The reservoir interval
comprises five 30-m-thick layers, two of which have high gas satura-
tion. From the upper to the bottom layers, the gas saturation values
are 0.1, 0.95, 0.4, 0.9, and 0.1, respectively. The corresponding po-
rosity values are 0.15, 0.25, 0.15, 0.1, and 0.05, respectively. The
synthetic AVA is sampled 50 times at 2 ms for five incident angles
(0°,10°,20°, 30°, and 40°), calculated from the Zoeppritz equation.
The synthetic EM data include the amplitude and phase of the mea-
sured electric field at 0.25 Hz for 21 source-receiver offsets. Gauss-
ian random noise was added, starting with 10% noise (S/N ratio is
10) for the first angle and increasing up to 30% (S/N ratio is 3.3) at
the far angle. Similarly, 10% Gaussian noise was added to the elec-
tric fields at the near offsets, increasing to 30% at the maximum off-
set. The prior bounds for the porosity and gas saturation of each layer
are taken to be [0, 0.3] and [0, 1], respectively. This represents a uni-
form prior distribution of gas saturation and porosity based on entro-
py theory. The synthetic analysis starts with the uniform distribu-
tions to see if the inclusion of EM data can improve our estimates of
reservoir parameters.

We performed a seismic-only inversion, simultaneously targeting
10 variables, including the porosity and gas saturation of the five lay-
ers. Seismic AVA inversion provides relatively accurate estimates of
the porosity (see the solid curved lines in the left panels in Figure 3).
In general, the uncertainty associated with the porosity estimation
increases from the top to the bottom layers because the seismic data
always have better coverage of the upper layers than the bottom
ones. Despite the accurate estimates obtained for porosity, the seis-
mic inversion yielded poor estimates for gas saturation, as shown in
the right panels in Figure 3. This is not surprising because seismic
AVA responses are less sensitive to gas saturation changes, as dis-
cussed in the introduction.

Combining both the seismic AVA and EM data in a jointinversion,
we obtain the results in parameter predictions as shown in Figure 3
(dashed lines). By comparing the results with those obtained from
only inverting seismic data, we can see a significant improvement
for porosity at all layers. The gas saturations in layers 1 and 2 are well
characterized. The predicted modes of the marginal PDFs are close
to the actual values of the target variables, although the uncertainty
levels in the gas saturations for layers 3~5 are still large.

Multiple-frequency data are available (e.g., 0.25, 0.75, and
1.25 Hz) in practice. To test the inversion performance with more in-
formation included, we generated EM synthetic data at three fre-
quencies common in field data. The inversion results are shown in
Figure 3 in dotted lines, from which we can see that the joint inver-
sion using seismic and multiple-frequency EM data provides better
estimates of gas saturation at all layers. Although the uncertainty
levels for the bottom layers remain significant, the modes of the
PDFs are closer to the true values, thus all gas-rich or water-rich lay-

ers are identified. As stated above, up to 30% noise has been intro-
duced into both measurements and the forward-model responses;
thus, large predictive bounds are not unexpected.

In synthetic analyses, it is also interesting to explore conditions
that are less favorable for joint inversion and to estimate the error
level in the data that makes the joint inversion nonbeneficial. In the
following study, we work on a different synthetic model by flipping
the target layers upside down, such that the top layers are more resis-
tive with high gas saturation; the contrast between adjacent layers is
much less compared to the original synthetic case. Specifically, from
the upper to the bottom layers, the gas saturation values are 0.95, 0.9,
0.05, 0.1, and 0.4, respectively. The corresponding reference porosi-
ty values are 0.25, 0.1, 0.15, 0.05, and 0.15, respectively. As shown
in Figure 4, we obtain good estimates of the porosity at all layers and
the gas saturation in the top gas-rich layers of the target zone. How-
ever, because of the existence of the resistive layers on the top of the
target zone, the CSEM and the seismic AVA responses become less
sensitive to changes in the gas saturation at bottom layers; mean-
while, the gas saturation has less contrast between adjacent layers.
As aresult, the gas saturation at the bottom layers is not well identi-
fied. This study shows that the joint-inversion results using seismic
AVA and EM data could be compromised under unfavorable condi-
tions, for example, with resistive layers on top or with weak contrast
in target parameters between adjacent blocks. Under these situa-
tions, the EM and seismic AVA responses are not sensitive to chang-
es in target parameters.
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Figure 3. Estimated porosity and gas saturation. The solid curved
lines represent the estimated PDFs using seismic AVA data only. The
dashed lines represent estimates using both seismic AVA and 0.25-
Hz CSEM data. And the dotted lines represent estimates using seis-
mic AVA and multiple-frequency (0.25, 0.75, and 1.25 Hz) CSEM
data. The vertical lines represent the true values. The plots to the left
are the estimates of porosity at layers 1~5 (from top to bottom). The
plots to the right are the estimates of gas saturations at layers 1~5
(from top to bottom).
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We perform similar inversion analyses using synthetic data gener-
ated using various true models and associated with different error
levels. In general, the inclusion of EM data improves our ability to
identify the gas-rich layers, although the improvements may vary
given different locations of gas-rich and water-rich layers. When the
error levels associated with the EM data are very high (e.g., the S/N
ratio is around three or even smaller at the near offset), the joint-in-
version results converge to that of seismic AVA only inversion, thus
making the inclusion of EM data nonbeneficial. Moreover, when the
S/N ratio is around two or even smaller at small incident angle for the
seismic AVA data, even the porosities cannot be identified.

TROLL FIELD STUDIES

In this section, we apply our MRE-based Bayesian approach to
the Troll field site, the location of which is shown in Figure 5. The
Troll field is located in the North Sea, near the west coast of Norway,
on the edge of the Horda Platform. The field is divided by two major
north-south-trending faults that separate the field into three provinc-
es; Troll West Oil Province (TWOP), Troll West Gas Province
(TWGP), and Troll East. Our study site is located at TWGP, where
seismic and marine CSEM data are available, since 2003. The ma-
rine CSEM line from receivers 1 to 24 is shown as the straight line in
the southwest direction in Figure 6. Also shown in Figure 6 is the
simplified geological cross section below the CSEM transect. The
reservoir interval is Jurassic sandstones, with a thick gas column.
Hydrocarbon-filled sands show high average resistivities, between
200 and 500 Qdm, and occur at a depth of about 1400 m below sea
level. Water-bearing sandstones, sands, and overburden sediments
show resistivities in the 0.5-2-Qm range (Johansen et al., 2005). Be-
sides the high reservoir resistivities, the well-defined field edges, the

low and relatively constant resistivities in the geological layers
above the reservoir, and the moderate distribution of the hydrocar-
bon-filled reservoir, the TWGP site is also characterized by the
smooth seafloor and the constant water depth. These characteristics
make it well suited for testing our seismic and EM inversion ap-
proaches, with the assumption that the actual earth can be represent-
ed by a 1D layered model. There are several boreholes available
around the TWGP site, and well 31/2-1 intersects the reservoir be-
neath the CSEM transect near receiver 16. The small area near re-
ceiver 16 is chosen as our study site because the well-log data can
provide prior information about the reservoir parameters or provide
information for model evaluation.

A well located approximately 4 km to the northeast of our survey
line was used to derive all the parameters of the rock-properties
model, described in Hoversten et al. (2006). This well was also used
to derive the angle-dependent wavelets used in the AVA modeling of
the seismic data at the CMP nearest receiver 16.

The 3D seismic data used in this study are migrated and sorted
into CMP gathers. NMO and residual NMO were applied, along
with multiple removal and filtering to a nominal zero-phase wavelet.
The CMP-gather offsets were converted to angles by ray tracing in a
layered model with velocity and density taken from well 31/2-1.
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Figure 4. Estimated porosity and gas saturation using seismic AVA
and multiple-frequency (0.25 Hz, 0.75 Hz, and 1.25 Hz) CSEM
data. The vertical lines represent the true values. A different true
model is assumed by flipping the target layers upside down.
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Figure 6. Simplified geological cross section along the CSEM sur-
vey line in the Troll West Gas Province (TWGP) (after Johansen et
al., 2005). The marine CSEM line from receivers 1 to 24 is shown as
the straight line in the southwest direction in the inset. The large pan-
el gives the locations of the CSEM receivers along the survey line.
The receivers are deployed from southwest to northeast along the
line. Well 31/2-1 intersects the reservoir beneath the CSEM transect
between receivers 16 and 17.
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Depth-time pairs were generated from well 31/2-1 and used to deter-
mine the time window for the seismic data such that the data covered
the depth interval 100 m above and below the reservoir zone (Hov-
ersten et al., 2006).

Marine EM data used in this study consist of amplitude and phase
as a function of frequency and transmitter-receiver offset at receiver
16, the closestreceiver to the well. Receivers 1 to 24 are placed along
the CSEM survey line from southwest to northeast, with nominal
separation between receivers of 750 m along the line. A 220-m elec-
tric-dipole transmitter, producing 800 amps, was towed at approxi-
mately 2 knots along the receiver line in both directions, producing
data at the receivers for transmitters on either side of the receiver.
The EM amplitudes and phases along with the applied current and
transmitter locations are recorded as time series, which are then av-
eraged to produce in-phase and out-of-phase electric field for aver-
age transmitter locations spaced 100 m apart along the line. The data
are recorded at three frequencies: 0.25,0.75 ,and 1.25 Hz.

Figure 7 shows the CSEM data converted to amplitude and phase
of the electric field in the line direction (roughly parallel to the trans-
mitter dipole orientation) for receiver 16. If the earth had a 1D con-
ductivity structure (as the inversion forward model assumes), the re-
sponse, both amplitude and phase, would be identical for transmit-
ters on either side of the receiver. We see that this is true for offsets up
to about 4 km. Beyond 4 km, the difference between data from
transmitters on either side of the receiver increases with offset and
frequency. The largest asymmetry occurs for the highest frequency
at the far offsets in both amplitude and phase.

In general, the spatial sensitivity of the CSEM data to this dipole-
dipole configuration is a function of source-receiver offset, earth
conductivity, and frequency, with lower frequencies and larger off-
sets having sensitivity to deeper changes (Spies, 1989). As the trans-
mitter-receiver offset increases, the centroid of the sensitivity region
moves downward and away from the receiver in the direction toward
the transmitter. To approximate a 1D response, we have averaged the
EM data for transmitters on either side of the receiver, thus causing
the centroid of the sensitivity region of the averaged data to be di-
rectly below the receiver location.

The water depth over the survey area is 320 m. In general, the
magnitude of the response from resistive zones in the subsurface as a
percentage of the total observed field becomes less as the water
depth decreases. This is caused by the increased magnitude of the di-
rect air wave, that portion of the total field that propagates up through
the water, through the air, and back down to the receivers. In princi-
ple, if the seafloor bathymetry and seawater conductivity are well
known, this effect can be incorporated in the modeling so that inver-
sion of the data can accurately image the subsurface. In practice,
there is some noise floor below which the target response cannot be
extracted from the total field. The list of noise includes, but is not
limited to, incorrect assumptions about water conductivity, incorrect
positioning of sources and receivers, and errors in transmitter cur-
rent magnitude and phase. The determination of when the water
depth is too shallow must be done on a site-by-site basis and is de-
pendent on the size, resistivity, and depth of the target. In the case
presented here, the resistive section of the Troll field is over 100 m
thick at a depth of 1400 m, and forward modeling shows that the res-
ervoir produces a contribution to the total field that is approximately
25% at an offset of 5 km, whichis 1 km before the air wave begins to
dominate the response.

In addition to the seismic and EM data, V,, S,,, density, and porosi-
ty logs are available from well 31/2-1. No production has occurred

in the area near the well, so we expect that §,, has not changed by
more than 1% or 2% since the logs were taken. The well log also
shows a predominantly oil zone between 1544.5 and 1557.5 m
depth, where original oil saturations were between 70% and 85%.
Below 1557.5 m depth is a paleo-oil zone, where original oil satura-
tions were 20% to 30%. No gas- or oil-saturation logs are available,
but time-lapse seismic data have been interpreted as follows: Be-
tween the time of log measurements and the geophysical survey data
used in this study, production from the oil rim has lowered reservoir
pressures such that gas has been released from the oil in the oil and
paleo-oil zones, resulting in a 5% increase in gas saturation in these
zones (Hoversten et al., 2006). We therefore use the logged S,, to cal-
culate oil and gas saturation in the reservoir as follows: Above
1544.5 m depth, oil saturation (S,) is assumed to be zero thus, S,=1
-8, Below 1544.5 m, §,=0.05 thus, S,=1-5S,, — 0.05. The logged
S,, and calculated S, and S, are used for comparing the performance
of the different inversions.

The Bayesian model in equation 2 for this application was devel-
oped based on the geometry shown in Figure 2. We divide the reser-
voir into 16 layers, each of which has a thickness of 20 m. The un-
knowns are S,,, S,, S,, and ¢ for each of these target layers. For seis-
mic AVA data inversion, we also consider V,,, V, and p as unknowns
for the five layers above and the one layer below the reservoir, with
each layer having a thickness of 20 m. For EM data inversion, we
also include among the unknowns the electrical conductivity at each
layer of the reservoir overburden (including seawater), which is di-
vided into 13 layers based on resistivity logs collected from well
31/2-1.

Overburden V,, V,, and p above the target zone are required for
two reasons. First, the time interval for the seismic data used in the
inversion is chosen from a time-to-depth conversion based on the
available velocity model, which may be in error. If the depth to the
top of the target (reservoir) zone does not exactly tie to the selected
time window, the inversion can adjust V,, above the target zone as a
correction. Second, log information required to calculate the rock-
properties model is usually only taken within the reservoir, so that
we can only describe the target zone itself in terms of fluid satura-
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Figure 7. Electric-field amplitude (upper row) and phase (lower row)
at 0.25,0.75, and 1.25 Hz as a function of the source-receiver offset
(m) at CSEM receiver near well 31/2-1. Transmitter locations to the
west of the receiver are plotted in black; transmitter locations to the
east are plotted in red.
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tions and ¢. However, we need properties for the layer directly
above the reservoir to calculate the reflection coefficient at the top of
the reservoir. The V), V,, and p below the target interval are not strict-
ly required but provide continuity in the seismic data fit at times be-
low the reservoir.

We adopt relatively wide bounds for all these parameters in the
following ways. For the parameters in the zones outside the reser-
voir, such as V,, V,, and p at the layers below and above the reservoir,
as well as the electrical resistivity of the overburden layers, we as-
sume they vary within 20% of the interval averages from well 31/2
-1.For §,, and §,, we set their bounds at 0.3 from linear trends, with
S, trending from one to zero, while §,, trends from zero to 0.8, going
from the top to the base of the reservoir. The upper bound on §,, is set
tobe 0.1 above 1544.5 m depth, where no oil was present in the orig-
inal logs; while below 1544.5 m, where oil was originally present,
the S, upper bound begins at 1 at 1544.5 m and decreases linearly to
0.3 at the base of the reservoir. The bounds for ¢ at the target layers
are set at 0.1 from their initial interval-averaged well-log values.
All of these bounds are subject to the physical constraints on the rele-
vant parameters; for example, the bounds for S, S, S,,, and ¢ should
be within the interval [0, 1].

Inversion results using uniform priors

As mentioned above, the MRE approach is used to determine the
prior distributions of these unknown parameters, given the prior in-
formation such as the bounds and moments of the parameters. As-
suming the bounds on the target parameters are all the information
we have, the priors take the form of uniform distributions based on
entropy theory, as shown in equation 3.

Using the uniform prior distributions, we performed an inversion
using only the seismic data from the CMP gather at receiver 16; the
results are shown in Figure 8. The red symbols are the borehole logs,
the green lines are the prior bounds, the blue lines represent the esti-
mated posterior modes, and the black dashed lines represent 0.5%
and 99.5% quantiles of predictions (99% predictive intervals). From
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Figure 8. Inversion using seismic data only. Red dotted lines repre-
sent well-log values, green lines are the prior bounds, blue lines are
the estimated posterior modes, and black lines represent 99% predic-
tive intervals.

Figure 8, we can see that the predicted porosities are close to the
logged values. Compared to the prior bounds, the predictive inter-
vals show that the predicted uncertainty decreases.

The water saturations at the target layers are not well identified,
and the predictive intervals are almost the same as the prior bounds.
Consequently, the uncertainty levels associated with both the gas
saturation and the oil saturation at almost all target layers are not re-
duced. These results are reasonable because seismic responses are
more sensitive to porosity but are less sensitive to water, gas, or oil
saturations. For S,,, S,, S,, and ¢, the rms of the misfits between the
inverted-parameter values (posterior modes) and the well-log obser-
vations is 0.724. Our method calculates posterior distributions in-
stead of specific values such as posterior modes. Although both the
rms misfit and the predictive intervals are used to evaluate the good-
ness of the inversion results, we consider the latter to be more infor-
mative.

The seismic AVA model responses calculated using the posterior
modes of the parameters are shown in Figure 9, together with the ob-
served seismic data and the differences between model responses
and observations. From the figure, we can see that the modeled seis-
mic AVA responses match the observations very well. To facilitate
the comparison of the results using different inversion approaches,
we also calculated the rms of the differences between the modeled
seismic AVA responses and the observations. The rms seismic data
misfit in this case is 0.766, which was normalized by the maximum
value of seismic observations.

Figure 10 shows the inversion results using only the EM data at re-
ceiver 16 (Rx16). The uncertainty levels associated with both water
saturations and porosity at the target layers are not reduced. Al-
though the posterior modes of water saturations at top layers and po-
rosity at middle layers are close to the well logs, the corresponding
predictive intervals are too large to make the predictions convincing.
Moreover, the high water saturations between the depth of 1560 m
and 1640 m are not identified. These results are compatible with our
synthetic case studies; the estimation of porosity and water satura-
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Figure 9. (a) Observed seismic AVA gather, (b) calculated AVA data
from seismic-only inversion, and (c) the difference between ob-
served and calculated AVA data. Zero time corresponds to the top of
the seismic-inversion zone 100 m above the reservoir. The top and
base of the reservoir are at 0.1 and 0.37 s, respectively.
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tion using only EM data is poor because the EM responses are affect-
ed by porosity and water saturation simultaneously and their effects
cannot be separated.

The EM observations and the calculated model responses based
on the posterior modes of the parameters are plotted in Figure 11.
The EM model responses calculated from the estimated parameters
match the observed amplitudes well at all frequencies. However, the
matches between the calculated and observed phases are not good at
further offset. The reason could be that the EM data are influenced by
the heterogeneity of the reservoir, the effect of which is amplified at
the larger offsets; therefore, the 1D layered-model assumption be-
comes inappropriate compared to the smaller offsets. Moreover, the
phase matches are better for lower-frequency EM data because high-
er-frequency EM data have higher resolution and thus are more easi-
ly influenced by the heterogeneity between the sea surface and the
bottom of the reservoir. Considering that the EM observations range
over several orders of magnitude, we normalized the misfits by the
EM observations (relative misfits = misfits/observations), and the
corresponding rms value of the relative misfits is 0.217.

Figure 12 shows the inversion results for joint inversion using the
EM and seismic AVA data simultaneously. Compared to the results
using seismic data only, the posterior modes of water saturations
from joint inversion are much closer to the well logs for the target
layers: the corresponding rms misfit of water saturation decreases
from 0.212 to 0.170. The achieved rms misfits for S, and S, as well
as the total misfit, are smaller than those obtained using nonlinear
least-squared approach by Hoversten et al. (2006). The estimates of
the gas saturations for the upper half of the reservoir layers are also
improved. However, the predictive intervals are still large. These re-
sults indicate that the parameter estimation at the target layers can be
improved with the inclusion of EM data, but the uncertainty levels of
these parameters remain high given the relative noninformative pri-
or bounds.
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Figure 10. Inversion using EM data only. Red dots and lines repre-
sent well-log values, green lines are the prior bounds, blue lines are
the estimated posterior modes, and black lines represent 99% predic-
tive intervals.

Inversion results using truncated exponential priors

In application, more information on the reservoir parameters may
be available, for example, their expectation values (prior means).
Given information about the bounds and the prior means, the priors
take the form of truncated exponential distributions based on MRE
theory (Woodbury and Ulrych, 1993; Rubin, 2003; Hou and Rubin,
2005). The prior means can be obtained from other sites explored in
this province. To show how this additional information can be used
to improve our parameter estimation, we use the values from the lin-
ear trends as the prior means, with S, trending from one to zero and
S, trending from zero to 0.8, considering the possible presence of oil
near the base of the reservoir.

Using the truncated exponential priors, we performed inversions
using seismic AVA data and EM data individually, as well as a joint
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Figure 11. Observed CSEM data at receiver 16 and calculated data
from EM inversion only. Red lines represent the field data, black
lines represent the calculated data.
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inversion using both types of data. The results are shown in Figures
13-15. By comparing these three figures with Figures 8, 10, and 12,
respectively, we can see that the predictive intervals of almost all of
the target parameters are much narrower because the ambiguity
about these parameters has been reduced through the inclusion of the
prior means. In addition to the narrower predictive intervals, the esti-
mated posterior modes are closer to the well-log values. The im-
proved posterior predictions are expected because more information
is included when using the MRE approach to obtain the priors. It can
be the case that information that is considered a suitable prior may in
fact become incompatible with field observations as more observa-
tions become available. Our previous work (Hou and Rubin, 2005)
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Figure 13. Inversion using only seismic data with information about
prior means. Red dots and curve represent well-log values, green
lines are the prior means, blue lines are the estimated posterior
modes, and black lines represent 99% predictive intervals.
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Figure 14. Inversion using only EM data with information about pri-
or means. Red dots and curve represent well-log values, green lines
are the prior means, blue lines are the estimated posterior modes, and
black lines represent 99% predictive intervals.

studied the issues of prior incompatibility and showed that a heavy
concentration of the posterior probability next to any of the prior
bounds indicates such incompatibility.

By comparing the results from joint inversion (Figure 15) and
seismic-only inversion (Figure 13), we can see that the inclusion of
the CSEM data in the joint inversion improves the predictions of the
target parameters with reduced predictive intervals and that the pre-
dictions of the gas saturations at the bottom layers of the reservoir
are closer to the well-log observations.

The rms misfits between the inverted parameters and well-log ob-
servations, as well as the rms misfits between the CSEM/seismic
AVA observations and the calculated model responses using inverted
parameters are summarized in Table 1. For both uniform and truncat-
ed exponential prior PDFs, including CSEM data in the inversion re-
duces the rms misfits between the inverted parameters and the well
logs. When using different combinations of seismic AVA and CSEM
data, the more informative prior enables us to achieve smaller mis-
fits. Another observation from the table is that the misfit between the
seismic AVA observations and the calculated model responses be-
comes slightly larger, because the model fit for seismic AVA data is
compromised by the inclusion of the CSEM data in the joint inver-
sion.

In summary, the inclusion of EM data improves our estimates of
water, gas, and oil saturations; it yields narrower predictive intervals
as well as predictions that are generally closer to the well-log obser-
vations. The MRE-Bayesian framework enables us to deal with dif-
ferent types of prior information. Additional information, such as
prior means, leads to much narrower predictive intervals of the target
parameters as well as closer predictions to the well logs. Figure 16
shows the posterior distributions of the gas saturations at the third
layer (gas-rich layer) and fifteenth layer (water-rich layer) from the
top of the reservoir (e.g., 1405-m depth), illustrating the benefits of
including the CSEM data and information about the prior means into
the inversion procedure.
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Figure 15. Joint inversion using seismic and EM data, with informa-
tion about prior means. Red dots and curve represent well-log val-
ues, green lines are the prior means, blue lines are the estimated pos-
terior modes, and black lines represent 99% predictive intervals.
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Table 1. Root-mean-square misfits between the inverted parameters and well logs, rms misfits between the EM/seismic AVA
observations, and the calculated model responses using inverted parameters.

Rms of Rms
Rms Rms Rms Rms (Sy» S, misfit Rms
misfit misfit misfit misfit S,, and (seismic misfit
(S,) (S,) (S,) (porosity) porosity) AVA) (CSEM)
Uniform Seismic 0.212 0.271 0.183 0.058 0.724 0.766 —
prior inversion
EM 0.198 0.238 0.210 0.064 0.710 — 0.217
inversion
Joint 0.170 0.257 0.155 0.058 0.640 0.888 0.155
inversion
Truncated Seismic 0.163 0.219 0.145 0.057 0.584 0.686 —
exponential inversion
prior EM 0.189 0.238 0.120 0.074 0.621 — 0.228
inversion
Joint 0.159 0.219 0.146 0.056 0.580 0.722 0.138
inversion
The advantage of formulating this inverse problem in a stochastic
Layer 3 Layer 15 framework is manifested in the statistics of the target parameters. In-
— — — Seismic inversion with uniform prior pdf stead of the usual single-valued estimation that is provided by the de-
"""" Joint inversion with uniform prior pdf terministic approach, we obtain a probability distribution, which al-
20 Joint inversion with prior means . . .
lows computing mean, mode, and confidence intervals and is useful
for a rational evaluation of uncertainty and its consequences. More-
2 15 2 over, the MRE-Bayesian framework enables us to achieve much bet-
% % ter parameter-estimation results when implementing a more infor-
_-; ;i mative prior.
B 1o} 3 We made several important assumptions in the study. We assumed
§ § the earth can be represented by a 1D layered model. This assumption
may be inappropriate for high-frequency EM data sets at large off-
5 sets, because higher frequency EM responses are more easily affect-
S N ed by 3D structures of the earth. For seismic data, we assumed that
i . - . s the effects of multiples and waveform spreading can be neglected.
o7 o8 os 1 05 0 0z 03 '0_4 We also assumed that the rock-physics model parameters developed

Gas saturation Gas saturation

Figure 16. The posterior distributions of the gas saturations at the
third layer (gas-rich layer) and fifteenth layer (water-rich layer) from
the top of the reservoir (e.g., 1405 m depth).

CONCLUSIONS

We propose an MRE-Bayesian approach for joint seismic and EM
inversion. Our preliminary results from synthetic data indicate that
jointinversion based on seismic and EM data improves our capabili-
ty to identify and confirm the locations of gas-rich layers. Seismic
AVA responses can be used to identify the porosity very well. How-
ever, the responses are not sensitive to gas saturation changes; thus,
incorporation of EM data in the inversion is warranted and is proven
to be useful in improving our ability to predict gas saturation.

The approach is also applied to field data at Troll field in the North
Sea. Results show the benefits of including EM data together with
seismic data in the inversion. Compared to any individual inversion
using either seismic or EM data, the joint inversion gives predictions
that are generally closer to well logs and gives narrower predictive
intervals, which means the ambiguity or uncertainty associated with
the parameters is reduced.

from the well logs nearby are true for our study site. These assump-
tions can be overcome by increasing the complexity of both the seis-
mic and EM models. For example, we can use 1D elastic-seismic
calculation with waveform spreading, mode conversions, and all
multiples; or we can consider quasi-2D, 2D, or even 3D forward
models.
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APPENDIX A

QUASI-MONTE CARLO INTEGRATION OF
NONLINEAR FUNCTIONS

As shown in equations 1 and 6, to get the posterior PDF and the
posterior moments, integrations of nonlinear functions need to be
carried out using Monte Carlo integration coupled with the concept
of importance sampling. Here, a quasi-Monte Carlo method is used
(Ueberhuber, 1997, p. 125). Quasi-Monte Carlo integration is a
method of numerical integration that uses sequences of quasi-
random numbers to compute the integral. Quasi-random numbers
are generated algorithmically by computer and are similar to pseu-
dorandom numbers, while having the additional important property
of being deterministically chosen based on equidistributed sequenc-
es in order to minimize errors. It moves rapidly and smoothly to finer
scales with increasing samples. One does not need to decide in ad-
vance how fine the grid should be; the method can sample until some
convergence or termination criterion is met.
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